A CURVA DE PHILLIPS

Professor Luís Casinhas

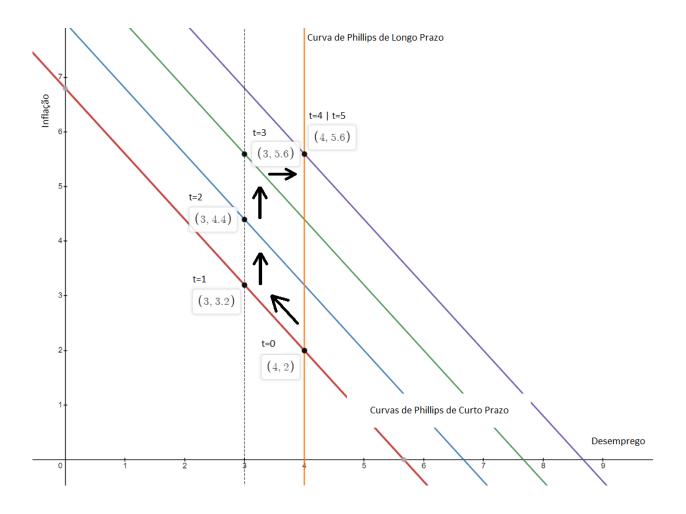
Deslocações da curva de Phillips.

- Estudámos em aula que alterações na taxa de desemprego (U) se refletem em deslocações ao longo da curva de Phillips.
- Sempre que estas deslocações impliquem que $U \neq U_n$, temos também deslocações da curva de Phillips, uma vez que se alteram as expetativas sobre a inflação para o período seguinte.
- A curva deixa de se deslocar quando $U_t = U_n$ novamente, porque as expetativas de inflação se mantêm inalteradas.

Exemplo

Para cada período t e sem choques de oferta ($\rho = 0$), a curva de Phillips é dada por:

$$\pi_t = \pi_t^e - \omega (U_t - U_n)$$


Considerem-se expetativas adaptativas ($\pi_t^e = \pi_{t-1}$). Se $\pi_0^e = \pi_{-1} = 2$, $U_n = 4$, $\omega = 1.2$, defina-se a curva de Phillips para cada período t = 0, ..., 5, e calcule-se a taxa de inflação quando:

- 1. Em t = 0, $U_t = 4 \Rightarrow$ Longo Prazo $(U_t = U_n)$;
- 2. Em $t = \{1, 2, 3\}, U_t = 3;$
- 3. Em $t = \{4, 5\}, U_t = 4$.

Representem-se graficamente as curvas e os pares ordenados (U, π) calculados.

Podemos comprimir a resolução do exemplo na tabela e gráfico seguintes:

t	$\pi_t^e = \pi_{t-1}$	U_n	Curva de Phillips	U_t	π_t	Cor da curva
0	2	4	$\pi_0 = 2 - 1.2(U_0 - 4)$	4	2	Vermelha
1	2	4	$\pi_1 = 2 - 1.2(U_1 - 4)$	3	3.2	Vermelha
2	3.2	4	$\pi_2 = 3.2 - 1.2(U_2 - 4)$	3	4.4	Azul
3	4.4	4	$\pi_3 = 4.4 - 1.2(U_3 - 4)$	3	5.6	Verde
4	5.6	4	$\pi_4 = 5.6 - 1.2(U_4 - 4)$	4	5.6	Roxa
5	5.6	4	$\pi_5 = 5.6 - 1.2(U_5 - 4)$	4	5.6	Roxa

De forma menos comprimida:

- Em t=0 estamos numa situação em que $U_0=U_n=4$ e $\pi_0=2$. Não há alteração de expetativas de inflação para o próximo período que voltará a ser igual a 2;
- Em $t=1,\,(U_1=3)<(U_n=4)$ o que promove uma deslocação ao longo da curva vermelha (expressão da curva de Phillips mantém-se inalterada) com alteração da

taxa de inflação para $\pi_1 = 3.2$ – essa será a taxa de inflação esperada para o período seguinte;

- Em t=2, a expetativa de inflação é agora diferente, o que se traduz numa deslocação da curva vermelha para a curva azul (a expressão da curva de Phillips foi alterada). Aqui, continuamos com $(U_2=3)<(U_n=4)$, logo $\pi_2=4.4$ essa será a taxa de inflação esperada para o período seguinte.
- Em t=3, a expetativa de inflação é agora diferente, o que se traduz numa deslocação da curva azul para a curva verde (a expressão da curva de Phillips foi alterada). Aqui, continuamos com $(U_3=3)<(U_n=4)$, logo $\pi_3=5.6$ essa será a taxa de inflação esperada para o período seguinte.
- Em t = 4, a expetativa de inflação é agora diferente, o que se traduz numa deslocação da curva verde para a curva roxa (a expressão da curva de Phillips foi alterada).
 Agora, temos U₄ = U_n = 4, logo π₄ = 5.6. Não há alteração de expetativas de inflação para o próximo período que voltará a ser igual a 5.6;
- Em t=5, a expetativa de inflação continua a ser igual (a expressão da curva de Phillips mantém-se inalterada). Continuamos com $U_5=U_n=4$, logo $\pi_5=5.6$. Continuamos na curva roxa.